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Lagrangian submanifolds and higher-order mechanical systems 

Manuel de Le6ni and Ernest0 A LacombaS 
t CECIME, Consejo Superior de Investigaciones Cientificas, Serrano, 123,28006 Madrid, 
Spain 
$ Departamento de Matemiticas, Universidad Aut6noma Metropolitana, Iztapalapa, PO 
Box 55-543, MCxico DF, Mexico 

Received 9 February 1989 

Abstract. Higher-order Lagrangian and Hamiltonian systems (time dependent or indepen- 
dent) are interpreted in terms of Lagrangian submanifolds of symplectic higher-order 
tangent bundles. The relation between both formalisms is given. 

1. Introduction 

In a previous paper (de Le6n and Lacomba 1988), we saw that, given any higher-order 
Lagrangian function not necessarily regular, we can define a Lagrangian submanifold 
of a symplectic higher-order tangent bundle, which in local coordinates gives the 
Euler-Lagrange equations. This was done by using Tulczyjew's (1975,1976a) notion 
of special symplectic manifolds and their Lagrangian submanifolds given by generating 
functions. 

In this paper we complete the picture by showing how to relate with other Lagrangian 
submanifolds generated by the associated energy and the Hamiltonian in case the 
Lagrangian is regular. The higher-order case is more complicated than the first-order 
case, as we will see in P 3 .  An extension is also made to the time-dependent case in 
P 4 for the first-order case, and in 0 5 for the higher-order case. 

2. First-order Lagrangian and Hamiltonian dynamics. 

All manifolds and maps are here supposed to be C" differentiable. Given a manifold 
M, one considers new manifolds known as the tangent bundle TM and the cotangent 
bundle T*M of M. In general we denote by T~ and rM, respectively, the canonical 
projections of the tangent bundle TM and the cotangent bundle T*M on the manifold 
M, while OM denotes the Liouville form on T*M defined by 

(U, @M(P)>=(TrM(U) ,P)  (1) 

for any U E T,T*M, p E T*M. 

De$nition (Tulczyjew 1976a). A special symplectic manifold is a quintuple 
( X ,  M, r, A, A )  where T : X + M is a fibre bundle, A is a 1-form on X and A : X + T*M 
is a diffeomorphism such that r = rM 0 A and A = A*@,.,,,. If K is a submanifold of M 
and L : K + R is a function, the Lagrangian submanifold generated by L in the symplectic 
manifold ( X ,  dA) is defined as 

N = { p ~ X l d p ) ~ K , ( u ,  A ) = ( T r ( u ) , d L ) ,  

for any U E TX such that ( U )  = p and T r (  U )  E TK c T M } .  (2) 

0305-4470/89/183809+ 12$02.50 @ 1989 IOP Publishing Ltd 3809 
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If i : K + M is an embedding and L : K + R, we may identify K with i( K )  c M and 
generate the Lagrangian submanifold N according to this definition. We denote by 
i* : T* M /  K + T* K the mapping defined as follows: if x E K ,  then i* : T: M + T :  K is 
given by i*a = a 0 Ti for all a E T:M. For the sake of simplicity we shall omit the 
subscript and use the notation i* : T"M + T * K .  

Proposition. If i :  K + M is an embedding, then 

i * o A ( N ) = d L ( K ) .  

Boo$ We assume without loss of generality the identification K = i ( K )  c M. If p E N 
we have that k =  T ( ~ ) E  K and ( u p  , A * 8 , ) = ( T T ( u p ) ,  dL(k)) for any uPc TpX such 
that T r ( u P )  E TK. But 

( u p ,  A * & f ( p ) )  = ( W u p ) ,  e M ( A ( p ) ) )  = ( T d u p ) ,  i* 0 A ( p ) )  

for any TT( u p ) ,  so i* 0 A (  p )  = dL( k). We conclude the proof with the remark that 
T (  N )  = K. In fact, it is clear that T (  N )  c K. To prove the other inclusion we proceed 
as follows. Let kE K ;  then there exists an element z E TZM such that i*(z) =dL(k) .  
We set p = A - ' ( z ) .  Thus, we have 

( u p ,  A ( P I )  = ( u p ,  A * e ~ ( p ) ) = ( T A ( u p ) ,  e ~ ( A ( p ) ) )  

= ( T A ( u p ) ,  ~ M ( z ) ) = ( T ~ M  o TA(up) ,  Z) 

= ( T 4 u p ) ,  dL(k)) 

for all up E TpX such that TT( u p )  E TK. Since T (  p )  = T 0 A - ' ( z )  = T ,  ( z )  = k E K ,  we 
deduce that p E N. Then K c T (  N ) .  

Let V be an arbitrary manifold. We can define a canonical diffeomorphism BV : TT* V +  
T* T* V satisfying Tr* 0 Bv = T r *  as follows. Given U E TT* V we define Bv( U )  E 

T* T* V by its action on any w E TT* V such that TT*v( U )  = T ~ I  v( W )  as 

(w ,  &(U)) = (d&)(u, w ) .  

One verifies that in local coordinates ( q i )  for V, (qi ,  p i )  for T* V and (q ' ,  p i ,  q', oi) for 
TT*V we have 

In fact, Bv is nothing but the diffeomorphism defined by the canonical symplectic 
structure w v  = dev on T*V, i.e. &(U) = i ( u ) w v  (see Godbillon 1969). Define a l-form 
PV on TT*V by 

pV = Bt,(eT*v). 

Locally we have 

P v  =p, dq' - q i  dpi. 

Then (TT* V ,  T* V ,  T p v ,  PV, Bv) is a special symplectic manifold. Consider the case 
V = Q, K = M = T*Q and let H :  T*Q + R be a Hamiltonian function on T*Q. Then 
the corresponding Hamiltonian vector field tH is defined as the section &, = 
B,' 0 d(-H)  or, equivalently, 

i ( t H ) W Q  = -dH. 
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Its image is a Lagrangian submanifold in the symplectic manifold (TT*Q,dp,). 
Locally we have 

t H ( q ' , P i )  = ( s i ,  Pi, (aH/api), - (aH/aq ' ) ) .  

4' = (aH/ap , )  pi = - (dH/dq ' ) .  (3) 

Then the integral curves of tH satisfy the Hamilton equations for H :  

Consider the above construction for K = M = T*Q, X = 7T*Q. Then we can check 
that the Lagrangian submanifold NI generated by -H is the image of tH, i.e. NI = 
&,(T*Q) by taking into account (1). The following diagram illustrates the above 
situation: 

N ,  
.c 

T*T*Q \ 1 1 - d H  

T*Q- H R. 

Now, we can define a canonical diff eomorphism AV : TT* V + T* TV. First, let us 
recall that there exists a canonical involution Sv : TTV+ TTV locally given by 

Sv(q ' ,  4 ' 7  Sq' ,  Q') = (q ' ,  Sq' ,  4 ' 9  84 ' )  

where (q' ,  q', 6q', S q ' )  are local coordinates for TTV (see Godbillon 1969, Tulczyjew 
1976). Now, given v E 7'T* V we must define AV( U )  E T* TV by means of its pairing 
on any element w E W, where T ~ , , ( w )  = Trv(zl). Given two curves y :  R + TV and 
x : R + T* V such that jAy = Sv( w ) ,  j&y = U, and T~ 0 y = rv 0 x, we define 

(w ,  Av(v))  = (d/dt)(Y, X X O ) .  

In local coordinates we have 

Av(q', PI, 4 ' 9  0') = (4'9 4 ' 9  PI, Pi). 

Denote by av the 1-form on TT* V defined as av = A$( Orv). Locally we have 

av=p,  d q ' f p ,  dq'. 

Then (TT* V ,  TV, T r v ,  cyv, A, )  is a special symplectic manifold (see Tulczyjew 1976b). 

Remark. We notice that av # Pv but they differ by an exact I-form, hence d a v  = d p v  
and they define the same symplectic structure on TT*V. To show this, we define a 
canonical function C L ,  : T-T* V +  R as follows: 

n v ( u )  =(Trv(v), T T * V ( V ) )  V E 7 T " V .  

A simple computation in local coordinates shows that ay - pv = dRv. 
Now, we assume that L :  TQ + R is a$rst-order Lagrangian for a mechanical system. 

Consider the above construction for V = Q, K = M = TQ, X = T * Q .  We can check 
that the Lagrangian submanifold defined by (2) is N2 = A,' 0 dL( TQ), by taking into 
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account (1). Then we have the following diagram: 

N ,  
.c 
m * Q A  T*TQ 

In order to connect the Lagrangian with the Hamiltonian diagrams which exist 
independently, we need the Lagrangian L to be regular. Let us recall that L is said 
to be regular if the Hessian matrix of L with respect to the velocities (d2L/dqidq') is 
non-singular, where ( q i ,  4 ' )  are coordinates for TQ. In such a case, the 2-form 
w L  = ddJL, where J is the canonical almost tangent structure on TQ, is symplectic (see 
Godbillon 1969, de Le6n and Rodrigues'1989). Then there exists a unique vector field 
tL (called the Lagrange vectorfield) on TQ defined by the equation 

i(tL)oL = -dEL (4) 

where EL = C L  - L is the energy associated with L and C is the Liouville vector field 
on TQ. The projections onto Q of the integral curves of tL satisfy the Euler- Lagrange 
equations for L:  

(dL/dq') - (d/dt)(dL/dq') =O. ( 5 )  

Let Leg: TQ-, T*Q be the Legendre transformation for L. Then Leg is a local 
diff eomorphism locally given by 

Leg(q', 4 ' )  = (4, p i )  

where p i  = (dL/dq'). Hence we have 

wL= (Leg)*(wQ)* 

Then the Lagrange vector field tL : TQ -, 7TQ satisfies the relation 

AQo TLego tL=dL.  (6) 
If Leg is a global diffeomorphism (i.e. L is hyperregular) then we can define the 
Hamiltonian function H : T*Q + R as H = EL 0 (Leg)-'. Let be the Hamiltonian 
vector field corresponding to H, i.e. 

icHWQ = -dH. 

From (4)-(6), we easily check that 

tH = T Leg 0 tL 0 Leg-' 

i.e. the following diagram: 

TQA T*Q 
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is commutative. Then we have 

NI = 5~ ( T*Q) = (tH Leg)( TQ) = ( T Leg 0 TQ) = N2. 
We shall denote N = N I  = N 2 .  Then we can construct the following diagram: 

N TLeg 

1 

We notice that the maps A, and B,  are symplectomorphisms, establishing a one-to-one 
correspondence among the different Lagrangian submanifolds, i.e. 

N=(A,'odL)(TQ)=[B,'o (-dH)](T*Q). 

3. Time-independent higher-order Lagrangian and Hamiltonian dynamics 

We first introduce a few new concepts. Given a manifold Q of dimension m, its tangent 
bundle TkQ of order k is defined as the ( ( k +  1)m)-dimensional manifold of k-jets at 
0 of maps from R into Q. 

More precisely, given two such curves y, y' we say they are kth-order tangent at 
q = y(0) = y ' (0 )  E Q if 

(d'/dt')(f(Y(t))(O) = (d'/dt')(f(Y'(t))(O) 
for any real-valued function f defined in the neigbourhood of q. This defines an 
equivalence relation in the set of curves through q. The equivalence class or k-jet of 
y at 0 is denoted by j i y .  

If (9') are coordinates for Q then (qb, 41,. . . , 4;) are coordinates for TkQ, where 
q:, 0 6  r 6 k is defined by 

for r = 1,2, .  . , k 

ql(j,ky) = (dr /dtr)(q ' ( r ( t ) ) ) (o) .  

By J1( C , )  we denote the canonical almost tangent structure of order k (the Liouville 
vectorjeld) on TkQ. We set J, = (Jl)r, 1 S r, and Cr = Jr-,C1, 2 S r. By dT  we denote 
a differential operator introduced by Tulczyjew (1975) which applies p-forms on TkQ 
into p-forms on T~+ 'Q.  

A Lagrangian of order k is a function L :  T k Q +  R. We want to generalise to this 
case the description of first-order Lagrangian dynamics in § 2, but we will first review 
the constructions already known for this case (de Le6n and Rodrigues 1985a, b). 

We can construct a 2-form w L  on TZk-'Q given by 
k 

w L =  ( - l ) r - ' ( l / r ! )  dk-' ddJ,L. 
r = l  
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Also, we define the energy function corresponding to L as the function E L  on T 2 k - 1 Q  
given by 

k 

EL= (-l) ' - ' ( l /r!)  d;-l(C,L)-L. 
r = l  

The Lagrangian L is said to be regular if the Hessian matrix 

(a'L/aqLdqi) 

is non-singular. One easily verifies that L is regular if and only if wL is symplectic. 
In such a case, there exists a unique vector field tr (called a Lagrange vectorJield) on 
T2k- 'Q  such that 

Then tL is a semispray (or 2kth-order diferential equation), i.e. J 1 t L  = C, and the 
projections onto Q of its integral curves are the solutions of the Euler-Lagrange 
equations for L: 

k 
(-l)'(d'/dt')(aL/dqL) = O .  

r = O  

Finally, let us recall that the Legendre transformation is defined to be the map 
Leg: T2k- 'Q+ T*( T k - ' Q )  locally given by 

i o  k - 1  Leg(q& 41,. * 9 q i k - 1 )  = (46 , .  . > q k - 1 ,  pi, .  . * 9 Pi 

where p ; ,  0 C r S k - 1 are the generalised momenta defined by 

k - r - I  

P;= 1 (-1)' dXaL/aqi+s+i). 
s = o  

If L is regular then Leg is a local diffeomorphism, and conversely. 
There is a canonical inclusion j : TkQ + T (  Tk- 'Q)  defined by 

where a ( t )  =j,k- 'yt ,  y t ( s )  = y ( s +  t) .  We identify TkQ with the submanifold K = 
j (  T k Q )  and Euler-Lagrange equations are globally defined by means of the Lagrangian 
submanifold generated by L in the symplectic manifold 7T*(Tk- 'Q)  fibring onto 

Recall that in § 2 we defined a special symplectic structure for the map AV. Applying 
T(  T k - ' Q ) .  

this result to the case V = Tk-' Q, we get the following corollary. 

Corollary. The quintuple 

is a special symplectic manifold. 

The generalisation of the diagram in § 2 is more complicated because Leg: TZk- 'Q+ 
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T*( Tk - 'Q)  in this case and it is not defined in general in T(  Tk- 'Q) .  The new diagram 
is: 

N T Leg 

Here T Leg and T* Leg denote the tangent and cotangent maps associated with the 
Legendre transformation. 

There are two different ways of inducing a Lagrangian submanifold from the given 
Lagrangian function L. One of them is by considering the inclusion j which permits 
us to consider L defined in the submanifold K c TTk-'Q in the base of the special 
symplectic manifold given in the corollary. This is always a non-trivial inclusion if 
k 2 2,  because o f  the different dimensions. This defines the Lagrangian submanifold 
N in the symplectic manifold ( TT*Tk-'Q, daTk-iQ) from ( 2 )  by taking X = TT*Tk-'Q, 
M = TTk-'Q. The local expression of N is 

pp= ( a L / 3 q i )  pj = (aL/aq:+,) -p;+' O ~ r s k - 2  

p"' = (dL/dqL) 

which give exactly the Euler-Langrange equations (8) for L (see de Le6n and Lacomba 
1988). From the proposition in 0 2 we get the relation 

j* (ATk- lQ(N))  = dL( TkQ) .  

The other way is to pull back L to TZk-'Q via the projection r2kk-' : T2k-'Q + TkQ 
and then generate the Lagrangian submanifold NI in the symplectic manifold 
(T*  ~ 2 k - 1  Q, ~ ~ 2 k - 1 ~ )  which is the image of -dEL, i.e. 

NI = (-dE,)( TZk-'Q).  

Everything but the upper and left links in the square appearing on the left of the 
diagram is what we had in the case k = 1 .  The commutative triangle in the upper right 
part of the diagram describes the Hamiltonian dynamics given a Hamiltonian function 
H : T*( Tk - 'Q)  + R. The corresponding Hamiltonian vector field is defined by 

5 H  = ( B T ^ - l Q ) - l  ( -dH) 
which is equivalent to 

i([H)j)W+-IQ = -dH 
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where wTk--lQ = dBTr-lQ is the canonical symplectic form on T*( Tk- 'Q) .  Let N2 be 
the Lagrangian submanifold in the symplectic manifold (T* T" Tk-'Q, wT*T~-IQ) 
defined by 

N2= (-dH)( T*Tk-'Q). 

We consider below the link between the Lagrangian and the Hamiltonian formula- 

Assume that L is a regular Lagrangian, so that Leg is a (local) diffeomorphism. 
tions. 

Then the (local) relation 

T* Leg 0 d H  = dE, 0 Leg-' 

is equivalent to the pull-back equation: 

d H  = (Leg-')*(dE,) 

coming from H = EL 0 Leg-'. It is not hard to show (de Le6n and Rodriques 1985a, b)  
that the Lagrange vector field tL is given by 

t L = (  T Leg)-' O [ H  O Leg 

which is equivalent to (7), by using the definition of the Hamiltonian vector field tH. 
Now we have 

(T* Leg)(N2)=(T* Leg0 (-dH))(T*Tk-'Q) 

=((-dE,)oLeg-')(T*Tk-'Q)=(-dEL)(TZk-'Q)= N,.  

Furthermore, a simple computation in local coordinates shows that 

B+lQ(N)= N2. 

Then the Lagrangian submanifolds N, NI and N2 are taken to each other under the 
symplectomorphisms BTk--lQ and T* Leg at the top of the diagram. 

4. Time-dependent first-order Lagrangian and Hamiltonian dynamics 

Let H :  R x T*Q+ R be a time-dependent Hamiltonian. Then for each t E R fixed we 
set H ,  : T*Q+ R, H,(q', pI) = H (  t ,  q', p , ) .  We denote by tH, the Hamiltonian vector 
field corresponding to H, ,  i.e. 

i ( s $ H , ) w q  = -dH,. 

Thus we construct a vector field tH on R x T*Q defined by 

t H ( &  q ' t P I ) = ( a / a t ) + 5 H , ( q ' , p , ) .  

Hence the integral curves of tH satisfy the Hamilton equations (3) (see Abraham and 
Marsden 1978). 

An alternative approach is the following (see Asorey et a1 1983, Szebehely 1967, 
Thirring 1978, Weber 1985). We can extend H to a Hamiltonian Ht : T*( R x Q) + R, 
where T*(R x Q )  is the extended phase space. H +  is defined by 

H + ( t ,  q ' , P z , P ! ) = H ( t ,  S',Pl)+P' 

where ( t ,  q', p ' ,  pI) are local coordinates for T*( R x Q). 
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Consider the case V = R x Q, K = M = T*(R x Q )  in the construction of 0 2, where 

Then we obtain a Lagrangian submanifold N ,  in the symplectic manifold (TT*(R  x 
Q), d@RxQ) generated by - H+. 

P R x o  = BXxo( ~ ~ * ( R X Q ) ) .  

As in 0 2, we define 
( a )  tH+ = B,: Q 0 d( - H+) 

and we have that 
( b )  the Hamilton equations for H +  are 

If we denote by T : T*( R x Q )  + R x T* Q the canonical projection defined by 

d t ,  qi ,  P', pi) = ( t ,  qi, Pi) 
then a simple computation shows that the following diagram is commutative: 

€1 I 

R x T * Q  - T ( R x T * Q )  

Moreover we have 
T T ( N I )  = & ( R  x T*Q).  

Then we have the following diagram: 

T ( R  x T*Q) T*( R x T*Q) .  

R x T * Q  

Let us remark that the triangular part connecting T*( R x Q) ,  R x T*Q and R via 

Now, assume that L :  R x TQ+ R is a time-dependent first-order Lagrangian for a 
T, H +  and H is obviously not commutative. 

mechanical system. Then we consider the canonical inclusion 

i :  R x TQ+ T ( R  x Q )  
defined by 

i( t, v )  = ( a / a t )  + v. 

Then i is locally given by 
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Consider the above construction in § 2 for V = R x Q, K = R x TQ c M = T (  R x Q ) ,  
X = n*( R x 0). Then the submanifold N2 given by (2) is a Lagrangian submanifold 
in ( T T * ( R  x Q ) ,  da,,,). If ( t ,  q', p ' ,  p , )  are coordinates for T * ( R  X Q ) ,  then N2 is 
locally given by 

Clearly (9) gives the Euler-Lagrange equations for L. 
p' = (aL/at)  p, = (aL/aqi)  pI  = (aL/aq'). ( 9 )  

We have the following diagram: 
N2 
4 

7 T *  ( R x Q ) * T* T ( R x Q ) --, 

R L R x TQ A T*( R x TQ).  
The proposition in 0 2 is now 

i*(ARxo(N2)) = dL(R X TO).  
Now, assume that L is regular. Then the Legendre transformation for L is at least 

a local diff eomorphism 

locally given by 

where pi = (aL/aq'). Define H : R x T*Q + R by H = E L  0 Leg-', where E L  = CL-  L 
is the energy associated with L, and put H + =  H S p '  as above. Then a simple 
computation in local coordinates show that NI = N 2 .  In the following we denote 

Then we consider the following diagram (which connects the Lagrangian and 

Leg: R x TQ+ R x T*Q 

Leg(t, qi, q ' > = ( t ,  qi,pi) 

N = NI = N2. 

Hamiltonian diagrams): 
N 
" 

j*  I 
T*(R  x TQ)  T ( R  x T*Q)  T*(R  x T*Q)  
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As above, let us remark that the triangular part connecting T * ( R  x Q ) ,  R x T*Q and 
R is not commutative, but we can easily check that 

( T  Leg 0 &)( R x TQ) = TT( N ) .  

5. Time-dependent higher-order Lagrangian and Hamiltonian dynamics 

Let L :  R x T k Q  + R be a time-dependent Lagrangian of order k. Then we consider the 
canonical inclusion 

I .1 
R x TkQ - R x TTk- 'Q - T(  R x Tk- 'Q)  

locally given by 

i ( 4  q; ,q; ,  * - a ,  s i )  = ( t ,  qb, * ' 9 42-13 1, q ; ,  * .  * 9 4;) .  

Consider the construction in Q 2 for V = R x Tk- 'Q,  K = R x T k Q  c M = 
T ( R  x Tk - 'Q) ,  X = TT*(R x Tk- 'Q) .  Then the submanifold N2 given by ( 2 )  is a 
Lagrangian submanifold of the symplectic manifold (n*( R x Tk - 'Q) ,  daR,TL-lQ). 
If ( t ,  qb, . . . , qL-,, p , p l ,  . . . , p : - ' )  are local coordinates for T*(R  x Tk- 'Q) ,  then N2 
is locally given by 

I O  

p' = (aL/at)  

p ; - l =  (aL/aqL) 

pp= (dL/dq') p :  = (dL/aq:+l) - P : + I  O s r s k - 2  

which give the Euler-Lagrange equations for L. 
We have the following diagram: 

N2 
r 
.L 

* H x T i - l y  n * ( R x  Tk- 'Q)-  T * T ( R x  T ' - I Q ) -  

L R - R x T ~ Q  dL T*( R x T ~ Q ) .  

Again from the proposition in 0 2, we have that 

~ * ( A R ~ T ~ - - L Q ( N ~ ) ) = ~ L ( R  X TkO).  

Now, assume that L is regular. Then the Legendre transformation for L is at least 
a local diffeomorphism 

Leg: R x TZk- 'Q+ R x T*( T k - ' Q )  

given in coordinates by 
, o  k - l  Leg(t, qb, 41,. . . , q L l )  = ( t ,  qb,. . . , q k - l ,  p I , .  . . , p I  ). 
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The energy EL associated with L is now given by 
k 

EL= ( - l ) r ( l / r ! ) & ( C r L ) - L  
r = l  

where & is a differential operator which applies p-forms on R x T k Q  into p-forms 
on R x Tk". In fact, dT. is the natural extension of dT involving derivatives with 
respect to the time (see de Le6n and Rodrigues 1987). If we define H : R x T*( T k - ' Q )  + 
R by H = EL 0 Leg-', then we obtain a Lagrangian submanifold N I  in the symplectic 
manifold (TT*(R X T k - ' Q ) ,  dPRxTh--'Q) as in 0 4 and we have 

((BRxTk-'Q)-' 0 (-dH'))(T*(R X T k - ' Q ) )  = NI 

where again H + :  T*(R x T k - ' Q ) +  R is defined as H+=  H + p *  if p '  is the global 
momentum conjugate to time. A simple computation in local coordinates shows that 
Nl = N2 and we obtain a diagram similar to the last diagram of § 4. 

Remark. We notice that all the constructions in this paper hold if the Lagrangians are 
degenerate, since given any H and any L we can generate corresponding Lagrangian 
submanifolds. These submanifolds may be completely unrelated in general. The same 
is true if, in addition, we consider constraints in the following sense: the Lagrangian 
L is defined on some submanifold of TQ or TkQ, and so on. 
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